
Getting Started with Ansible

Jake Jackson
Partner Engineer
@thedoubl3j everywhere - irc, twitter, github etc

Share your automation story

1. How did you get started with Ansible?
I had a school project that asked us to go and find OSS that we
thought was interesting and I found ansible.

2. How long have you been using it?
3+ years

3. What's your favorite thing to do when you use Ansible?
Automation of meaningless tasks, most lineinfile config changes.

Agenda

- Introduction (We just did that didn’t we?)
- Introduction to Ansible

- What is Ansible?
- Where can I use it?
- How does it work?

- Using Ansible
- Brief of Ad-hoc commands
- Anatomy of a Playbook

- Tips and Tricks and where to find them
- Simplicity, Inventory, Syntax and Roles

- NEW STUFF ALERT
- Final thoughts

Ansible Intro

WHAT IS ANSIBLE AUTOMATION?

● The Ansible project is an open source community sponsored by Red
Hat. It’s also a simple automation language that perfectly describes IT
application environments in Ansible Playbooks.

● Ansible Engine is a supported product built from the Ansible
community project.

● Ansible Tower is an enterprise framework for controlling, securing,
managing and extending your Ansible automation (community or
engine) with a UI and RESTful API.

SIMPLE POWERFUL AGENTLESS

Human readable automation

No special coding skills needed

Tasks executed in order

Usable by every team

Get productive quickly

App deployment

Configuration management

Workflow orchestration

Network automation

Orchestrate the app lifecycle

Agentless architecture

Uses OpenSSH & WinRM

No agents to exploit or update

Get started immediately

More efficient & more secure

With Ansible you can automate
CROSS PLATFORM – Linux, Windows, UNIX

Agentless support for all major OS variants, physical, virtual, cloud and network

HUMAN READABLE – YAML

Perfectly describe and document every aspect of your application environment
PERFECT DESCRIPTION OF APPLICATION
Every change can be made by playbooks, ensuring everyone is on the same page
VERSION CONTROLLED

Playbooks are plain-text. Treat them like code in your existing version control.
DYNAMIC INVENTORIES

Capture all the servers 100% of the time, regardless of infrastructure, location, etc.

ORCHESTRATION THAT PLAYS WELL WITH OTHERS – HP SA, Puppet, Jenkins, RHNSS, etc.

Homogenize existing environments by leveraging current toolsets and update mechanisms.

ANSIBLE’S AUTOMATION ENGINE

ANSIBLE PLAYBOOK

PUBLIC / PRIVATE
CLOUD

CMDB

USERS

INVENTORY
HOSTS

NETWORKING
PLUGINS

API

MODULES

ANSIBLE’S AUTOMATION ENGINE

ANSIBLE PLAYBOOK

PUBLIC / PRIVATE
CLOUD

CMDB

USERS

INVENTORY
HOSTS

NETWORKING
PLUGINS

API

MODULES

ANSIBLE PLAYBOOK

Tasks are executed sequentially

Invokes Ansible modules

PLAYBOOKS ARE WRITTEN IN YAML

ANSIBLE’S AUTOMATION ENGINE

ANSIBLE PLAYBOOK

PUBLIC / PRIVATE
CLOUD

CMDB

USERS

INVENTORY
HOSTS

NETWORKING
PLUGINS

API

MODULES

MODULES ARE “TOOLS IN THE TOOLKIT”

Python, Powershell, or any language

Extend Ansible simplicity to entire stack

MODULES

ANSIBLE’S AUTOMATION ENGINE

ANSIBLE PLAYBOOK

PUBLIC / PRIVATE
CLOUD

CMDB

USERS

INVENTORY
HOSTS

NETWORKING
PLUGINS

API

MODULES

INVENTORY

[web]
webserver1.example.com
webserver2.example.com

[db]
dbserver1.example.com

ANSIBLE’S AUTOMATION ENGINE

ANSIBLE PLAYBOOK

PUBLIC / PRIVATE
CLOUD

CMDB

USERS

INVENTORY
HOSTS

NETWORKING
PLUGINS

API

MODULES

CMDB

CLOUD:

OpenStack, VMware, EC2, Rackspace, GCE,

Azure, Spacewalk, Hanlon, Cobbler

CUSTOM CMDB

ANSIBLE’S AUTOMATION ENGINE

ANSIBLE PLAYBOOK

PUBLIC / PRIVATE
CLOUD

CMDB

USERS

INVENTORY
HOSTS

NETWORKING
PLUGINS

API

MODULES

PLUGINS ARE “GEARS IN THE ENGINE”

Code that plugs into the core engine

Adaptability for various uses & platforms

PLUGINS

Using Ansible

Ad-hoc commands

check all my inventory hosts are ready to be
managed by Ansible
$ ansible all -m ping

run the uptime command on all hosts in the
web group
$ ansible web -m command -a “uptime”

collect and display the discovered for the
localhost
$ ansible localhost -m setup

Ad-hoc example

Inventory
An inventory is a file containing:

• Hosts
• Groups
• Inventory-specific data (variables)
• Static or dynamic sources

Playbooks

- name: install and start apache
 hosts: web
 vars:
 http_port: 80
 max_clients: 200
 remote_user: root

 tasks:
 - name: install httpd
 yum: pkg=httpd state=latest
 - name: write the apache config file
 template: src=/srv/httpd.j2 dest=/etc/httpd.conf
 - name: start httpd
 service: name=httpd state=started

- name: install and start apache
 hosts: web
 vars:
 http_port: 80
 max_clients: 200
 remote_user: root

 tasks:
 - name: install httpd
 yum: pkg=httpd state=latest
 - name: write the apache config file
 template: src=/srv/httpd.j2 dest=/etc/httpd.conf
 - name: start httpd
 service: name=httpd state=started

- name: install and start apache
 hosts: web
 vars:
 http_port: 80
 max_clients: 200
 remote_user: root

 tasks:
 - name: install httpd
 yum: pkg=httpd state=latest
 - name: write the apache config file
 template: src=/srv/httpd.j2 dest=/etc/httpd.conf
 - name: start httpd
 service: name=httpd state=started

- name: install and start apache
 hosts: web
 vars:
 http_port: 80
 max_clients: 200
 remote_user: root

 tasks:
 - name: install httpd
 yum: pkg=httpd state=latest
 - name: write the apache config file
 template: src=/srv/httpd.j2 dest=/etc/httpd.conf
 - name: start httpd
 service: name=httpd state=started

- name: install and start apache
 hosts: web
 vars:
 http_port: 80
 max_clients: 200
 remote_user: root

 tasks:
 - name: install httpd
 yum: pkg=httpd state=latest
 - name: write the apache config file
 template: src=/srv/httpd.j2 dest=/etc/httpd.conf
 - name: start httpd
 service: name=httpd state=started

- name: install and start apache
 hosts: web
 vars:
 http_port: 80
 max_clients: 200
 remote_user: root

 tasks:
 - name: install httpd
 yum: pkg=httpd state=latest
 - name: write the apache config file
 template: src=/srv/httpd.j2 dest=/etc/httpd.conf
 - name: start httpd
 service: name=httpd state=started

Handlers tasks:

 - name: add cache dir

 file:

 path: /opt/cache

 state: directory

 - name: install nginx

 yum:

 name: nginx

 state: latest

 notify: restart nginx

handlers:
 - name: restart nginx
 service:
 name: nginx
 state: restarted

Variables

Ansible can work with metadata from various
sources and manage their context in the form of
variables.

• Command line parameters
• Plays and tasks
• Files
• Inventory
• Discovered facts
• Roles

Tips/Best Practices

Simplicity

Simplicity

- hosts: web
 tasks:
 - yum:
 name: httpd
 state: latest

 - service:
 name: httpd
 state: started
 enabled: yes

Simplicity
- hosts: web
 name: install and start apache
 tasks:
 - name: install apache packages
 yum:
 name: httpd
 state: latest

 - name: start apache service
 service:
 name: httpd
 state: started
 enabled: yes

Naming Example

Inventory

10.1.2.75

10.1.5.45

10.1.4.5

10.1.0.40

w14301.example.com

w17802.example.com

w19203.example.com

w19304.example.com

Inventory

db1 ansible_host=10.1.2.75

db2 ansible_host=10.1.5.45

db3 ansible_host=10.1.4.5

db4 ansible_host=10.1.0.40

web1 ansible_host=w14301.example.com

web2 ansible_host=w17802.example.com

web3 ansible_host=w19203.example.com

web4 ansible_host=w19203.example.com

Dynamic Inventories
● Stay in sync automatically
● Reduce human error

PUBLIC / PRIVATE
CLOUD

CMDB

YAML Syntax

YAML and Syntax

- name: install telegraf

 yum: name=telegraf-{{ telegraf_version }} state=present update_cache=yes disable_gpg_check=yes enablerepo=telegraf

 notify: restart telegraf

- name: configure telegraf

 template: src=telegraf.conf.j2 dest=/etc/telegraf/telegraf.conf

- name: start telegraf

 service: name=telegraf state=started enabled=yes

YAML and Syntax

- name: install telegraf
 yum: >
 name=telegraf-{{ telegraf_version }}
 state=present
 update_cache=yes
 disable_gpg_check=yes
 enablerepo=telegraf
 notify: restart telegraf

- name: configure telegraf
 template: src=telegraf.conf.j2 dest=/etc/telegraf/telegraf.conf

- name: start telegraf
 service: name=telegraf state=started enabled=yes

YAML and Syntax
- name: install telegraf
 yum:
 name: telegraf-{{ telegraf_version }}
 state: present
 update_cache: yes
 disable_gpg_check: yes
 enablerepo: telegraf
 notify: restart telegraf

- name: configure telegraf
 template:
 src: telegraf.conf.j2
 dest: /etc/telegraf/telegraf.conf
 notify: restart telegraf

- name: start telegraf
 service:
 name: telegraf
 state: started
 enabled: yes

ansible-playbook playbook.yml --syntax-check

Roles

Roles

• Think about the full life-cycle of a service, microservice or
container — not a whole stack or environment

• Keep provisioning separate from configuration and app
deployment

• Roles are not classes or object or libraries – those are
programming constructs

• Keep roles loosely-coupled — limit hard dependencies on other
roles or external variables

Variable Precedence

The order in which the same variable from
different sources will override each other.

1. Extra vars
2. Include params
3. Role (and include_role) params
4. Set_facts / registered vars
5. Include_vars
6. Task vars (only for the task)
7. Block vars (only for tasks in the block)
8. Role vars
9. Play vars_files

10. Play vars_prompt
11. Play vars

12. Host facts / Cached set_facts

 13. Playbook host_vars
14. Inventory host_vars
15. Inventory file/script host vars
16. Playbook group_vars
17. Inventory group_vars
18. Playbook group_vars/all
19. Inventory group_vars/all
20. Inventory file or script group vars
21. Role defaults
22. Command line values (e.g., -u user)

Things to Avoid

● Using command modules
○ Things like shell, raw, command etc.

● Complex tasks...at first
○ Start small

● Not using source control
○ But no really...

New stuff!

Collections Q and A

What are they?
● Collections are a distribution format for Ansible content that can include

playbooks, roles, modules, and plugins. You can install and use collections
through Ansible Galaxy and Automation

How do I get them?
● ansible-galaxy collection install namespace.collection -p /path

Where can I get them?
● Today

○ Galaxy.ansible.com
● Future

○ Galaxy and Automation Hub

https://galaxy.ansible.com/

COMPLEXITY KILLS PRODUCTIVITY

That's not just a marketing slogan. We really mean it
and believe that. We strive to reduce complexity in
how we've designed Ansible tools and encourage you
to do the same. Strive for simplification in what you
automate.

OPTIMIZE FOR READABILITY

If done properly, it can be the documentation of your
workflow automation.

THINK DECLARATIVELY

Ansible is a desired state engine by design. If you're
trying to "write code" in your plays and roles, you're
setting yourself up for failure. Our YAML-based
playbooks were never meant to be for programming.

Mass Link Index
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#using-variables
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/user_guide/intro_getting_started.html#getting-started
https://docs.ansible.com/ansible/latest/user_guide/intro_adhoc.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/intro_dynamic_inventory.html
https://docs.ansible.com/ansible-lint/
https://github.com/ansible/ansible
https://github.com/ansible/ansible-lint
https://ansible.github.io/workshops/
https://www.ansible.com/resources/ebooks/get-started-with-red-hat-ansible-tower
https://docs.ansible.com/ansible/devel/user_guide/collections_using.html
https://docs.ansible.com/ansible/devel/dev_guide/developing_collections.html

https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#variable-precedence-where-should-i-put-a-variable
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#using-variables
https://docs.ansible.com/ansible/latest/user_guide/playbooks_intro.html
https://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
https://docs.ansible.com/ansible/latest/user_guide/intro_getting_started.html#getting-started
https://docs.ansible.com/ansible/latest/user_guide/intro_adhoc.html
https://docs.ansible.com/ansible/latest/user_guide/intro_inventory.html
https://docs.ansible.com/ansible/latest/index.html
https://docs.ansible.com/ansible/latest/user_guide/playbooks_reuse_roles.html
https://docs.ansible.com/ansible/latest/user_guide/intro_dynamic_inventory.html
https://docs.ansible.com/ansible-lint/
https://github.com/ansible/ansible
https://github.com/ansible/ansible-lint
https://ansible.github.io/workshops/
https://www.ansible.com/resources/ebooks/get-started-with-red-hat-ansible-tower
https://docs.ansible.com/ansible/devel/user_guide/collections_using.html
https://docs.ansible.com/ansible/devel/dev_guide/developing_collections.html

