Security Automation with Ansible

Adam Miller
Principal Software Engineer
Ansible Core Engineering
INFO SEC AREAS

Application Security
Network Security
Forensics
Incident Response
Penetration Testing
Fraud Detection and Prevention
Governance, Risk, Compliance
SECURITY VS OPERATIONS
SEC vs OPS

- IT Operations vs Security Team
 - Traditionally disjoint roles and responsibilities
 - IT Operations (should) harden systems
 - Manages infrastructure
 - Deploys and maintains systems
 - Security Operations Team
 - Tracks ongoing threats
 - Intrusion Detection/Prevention
 - Firewall management

Security is everybody’s responsibility.
WHY SECURITY AUTOMATION
“For one, security teams are overwhelmed. The average security team typically examines less than 5% of the alerts flowing into them every day (and in many cases, much less than that)."

MICHAEL CALLAHAN, AWAKE SECURITY
“Having insufficient skilled personnel dedicated to cybersecurity was the second biggest barrier to cyber resilience, with only 29% having the ideal staffing level.”

The Third Annual Study on the Cyber Resilient Organization - Ponemon Institute (Sponsored by IBM)
“57% of respondents said the time to resolve an incident has increased.

65% reported the severity of attacks has increased.”

The Third Annual Study on the Cyber Resilient Organization - Ponemon Institute (Sponsored by IBM)
“63% of respondents say their leaders understand that automation, machine learning, artificial intelligence and orchestration strengthens cyber resilience.”

The Third Annual Study on the Cyber Resilient Organization - Ponemon Institute (Sponsored by IBM)
WHY ANSIBLE?
SIMPLE

- Human readable automation
- No special coding skills needed
- Tasks executed in order
- Get productive quickly

POWERFUL

- Gather Information and Audit
- Configuration management
- Workflow orchestration
- Manage ALL IT infrastructure

AGENTLESS

- Agentless architecture
- Uses OpenSSH and paramiko
- No agents to exploit or update
- More efficient & more secure
WHY ANSIBLE FOR SECURITY AUTOMATION?

- Ansible is an Automation Tool
 - System hardening is something we (should) do for all systems
 - This leads to repetitive work as you:
 - Bring systems online
 - Take systems offline
 - Face new threats
 - Deploy new apps

Security is not special, it’s just another thing to automate
ANSIBLE FOR EVERYONE

ANSIBLE IS THE UNIVERSAL LANGUAGE

IT OPERATIONS DEVELOPMENT NETWORK SECURITY
NOT ZERO SUM

\[A + \neq 0 \]
SYSTEM HARDENING
Federal Information Processing Standards (FIPS)
- Standards developed by the United States federal government for use in computer systems by non-military government agencies and government contractors
- FIPS 140 Security requirements for cryptography modules
- FIPS 153 (3D graphics)
- FIPS 197 (Rijndael / AES cipher)
- FIPS 199 Standards for Security Categorization of Federal Information and Information Systems
- FIPS 201 Personal Identity Verification for Federal Employees and Contractors
● Security Technical Implementation Guide (STIG)
 ● Configuration standards for DOD IA and IA-enabled devices/systems
 ● Comes from the Defense Information Systems Agency (DISA), part of the United States Department of Defense.
 ● The guide is released with a public domain license and it is commonly used to secure systems at public and private organizations around the world.
 ● System and Version/Release specific
 ○ RHEL 7 STIG Version 1, Release 3 (Published on 2017-10-27)
 ○ RHEL 7 STIG Version 1, Release 1 (Published on 2017-02-27)
Ansible roles that **SECURE** your...

- Systems
- Servers
- Networks
- Cloud
- Desktops
- Middleware
Ansible Lockdown (https://ansiblelockdown.io/)
● Official Subproject of Ansible done in partnership with MindPoint Group
 ○ https://github.com/ansible/ansible-lockdown
● Community focused mailing list
 ○ https://groups.google.com/forum/#!forum/ansible-lockdown
● Covers STIG for the following Operating Systems
 ○ RHEL 6
 ○ RHEL 7
 ○ Windows Server 2012 DC
 ○ Windows Server 2012 MS
 ○ Windows Server 2008R2 MS
EXAMPLES: SYSTEM HARDENING
Rule Title: The SSH daemon must not allow authentication using an empty password.

Fix Text: To explicitly disallow remote logon from accounts with empty passwords, add or correct the following line in "/etc/ssh/sshd_config":

```
PermitEmptyPasswords no
```

```yaml
- name: "HIGH | RHEL-07-010270 | PATCH | The SSH daemon must not allow authentication using an empty password."
  lineinfile:
    state: present
    dest: /etc/ssh/sshd_config
    regexp: ^#?PermitEmptyPasswords
    line: PermitEmptyPasswords no
    validate: sshd -tf %s
    notify: restart sshd
```
Rule Title: The network element must only allow management connections for administrative access from hosts residing in to the management network.

Fix Text: Configure an ACL or filter to restrict management access to the device from only the management network.

- hosts: ios
 connection: local

tasks:
 - name: Create management ACL
 ios_config:
 parents: ip access-list mgmnt
 before: no ip access-list mgmnt
 lines:
 - 10 permit ip host 192.168.1.99 log
 - 20 permit ip host 192.168.1.121 log

- name: Harden VTY lines
 ios_config:
 parents: line vty 0 15
 lines:
 - exec-timeout 15
 - transport input ssh
 - access mgmnt in
Rule Title: Anonymous enumeration of shares must be restricted.

Fix Text: Configure the policy value for Computer Configuration -> Windows Settings -> Security Settings -> Local Policies -> Security Options -> "Network access: Do not allow anonymous enumeration of SAM accounts and shares" to "Enabled".

- hosts: windows

tasks:
 - name: Restrict enumeration of shares
 win_regedit:
 key: 'HKLM:\System\CurrentControlSet\Control\Lsa'
 value: RestrictAnonymous
data: 1
datatype: dword
6.2 Ensure that all system components and software are protected from known vulnerabilities by installing applicable vendor-supplied security patches. Install critical security patches within one month of release.

- name: RHEL | Install updates
 yum:
 name: "*
 state: latest
 exclude: "mysql* httpd* nginx*"
 when: "ansible_os_family == 'RedHat'"

- name: DEBIAN | Install updates
 apt:
 update_cache: yes
 cache_valid_time: 7200
 name: "*
 state: latest
 when: "ansible_os_family == 'Debian'"
INTERNAL STANDARDS

Change root password every 60 days

- name: Change root password
 hosts: all
 become: yes
 vars:
 root_password: "{{ vault_root_password }}"
 root_password_salt: "{{ vault_root_password_salt }}"
 tasks:
 - name: Change root password
 user:
 name: root
 password: "{{ root_password | password_hash(salt=root_password_salt) }}"
REMEDIATION
- name: Protect against CVE-2016-5696
 hosts: all
 become: yes
 become_user: root

 tasks:
 - name: CVE-2016-5696 | Limit TCP challenge ACK limit
 sysctl:
 name: net.ipv4.tcp_challenge_ack_limit
 value: 999999999
 sysctl_set: yes
Fix and test shellshock

- name: Fix and test shellshock
 hosts: all
tasks:
 - name: Update bash
 yum:
 name: bash
 state: latest
 update_cache: yes

 - name: Test vulnerability 1
 shell: 'env x=''() { ;}; echo vulnerable'' bash -c "echo this is a test"
 executable: /bin/bash
 register: vulntest1
 failed_when: vulntest1.stdout | search('vulnerable')
 ignore_errors: yes
 changed_when: no
- name: Test vulnerability 2
 shell: 'env X=''() { (a)'=>'' bash -c ''echo date'';'
 executable: /bin/bash
 register: vulntest2
 failed_when:
 not vulntest2.stderr | search('error importing function definition')
 ignore_errors: yes
 changed_when: no

- name: Cleanup after vulnerability test 2
 file:
 path: ~/echo
 state: absent
AUDITING AND REPORTING
Security Content Automation Protocol (SCAP)

- Method for using specific standards to enable the automated vulnerability management, measurement, and policy compliance evaluation of systems
 - Common Vulnerabilities and Exposures (CVE)
 - Common Configuration Enumeration (CCE) (prior web-site at MITRE)
 - Common Platform Enumeration (CPE)
 - Common Vulnerability Scoring System (CVSS)
 - Extensible Configuration Checklist Description Format (XCCDF)
 - Open Vulnerability and Assessment Language (OVAL)
 - Open Checklist Interactive Language (OCIL) Version 2.0
 - Asset Identification (AID)
 - Asset Reporting Format (ARF)
 - Common Configuration Scoring System (CCSS)
 - Trust Model for Security Automation Data (TMSAD)
● OpenSCAP
 ○ An implementation of SCAP
 ○ Scans
 ○ Audits
 ○ Provides remediation recommendations/instructions
 ○ Defacto-standard in opensource/Linux land
 ○ https://www.open-scap.org/

● OpenSCAP + Ansible
 ○ OpenSCAP can audit and generate Ansible Playbooks for remediation
INTRODUCING
ANSIBLE SECURITY AUTOMATION
WHAT IS IT?

Ansible is Red Hat’s enterprise automation platform to automate the provisioning and configuration of modern enterprise IT environments, from compute resources, like VMs and containers, to networks, all the way to the application layer.

Ansible Security Automation is a supported set of Ansible modules, roles and playbooks designed to unify the security response to cyberattacks in a new way - by orchestrating the activity of multiple classes of security solutions that wouldn’t normally integrate with each other.
WHAT DOES IT DO?

Through Ansible Security Automation, IT organizations can address multiple popular use cases:

- For **detection and triage of suspicious activities**, for example, Ansible can automatically enable logging or increase the log verbosity across enterprise firewalls and IDS to enrich the alerts received by a SIEM for an easier triage.
- For **threat hunting**, for example, Ansible can automatically create new IDS rules to investigate the origin of a firewall rule violation, and whitelist those IP addresses recognized as non threats.
- For **incident response**, for example, Ansible can automatically validate a threat by verifying an IDS rule, trigger a remediation from the SIEM solution, and create new enterprise firewall rules to blacklist the source of an attack.
WHO IS IT FOR?

Ansible Security Automation extends the Ansible agentless, modular and easy to use enterprise automation platform to support the following industry constituencies:

- **End-user organizations’ security teams** in charge of Security Operations Centres (SOCs)
- **Managed security service providers (MSSPs)** responsible for the governance of thousands of enterprise security solutions across their whole customer base
- **Security ISVs** offering security orchestration and automation (SOAR) solutions currently using custom-made automation frameworks
THANK YOU

Adam Miller
Principal Software Engineer
Ansible Core Engineering

maxamillion
maxamillion
@TheMaxamillion