
Ask an Expert: Ansible Network Automation
April 24, 2019

Ajay Chenampara
Solutions Architect
@termlen0

Andrius Benokraitis
Product Manager
@AndriusB

For more information or to register visit: ansible.com/automates

Dallas, TX
June 18, 2019

Austin, TX
June 20, 2019

Sacramento, CA
June 13, 2019

For more information or to register visit: ansible.com/workshops

New York, NY
April 30,, 2019

Atlanta, GA
May 2, 2019
May 21, 2019

Columbus, OH
May 14, 2019

NETWORK WORKSHOP NETWORK WORKSHOP NETWORK WORKSHOP

WHAT WE’RE TALKING ABOUT TODAY

Writing custom command parsers

Q/A with Ajay and Andrius

6

ANSIBLE NETWORK ENGINE
A quick introduction

“Automation, when done correctly, is about
taking a layered approach. Ansible does its job
and gets out of the way”

- Peter Sprygada
 Distinguished Engineer, Office of the CTO

Ansible Network Engine

Set of consumable functions distributed as Ansible Roles
designed to simplify operations

Automate the provisioning and configuration of network
infrastructure and multi cloud network connectivity.

NETWORK MODULES

CONNECTION PLUGINS
(CLI, API, NETCONF)

VIRTUAL NETWORK PHYSICAL DEVICESSDN CONTROLLERS

ANSIBLE ENGINE

ANSIBLE NETWORK STACK ARCHITECTURE

NETWORK MODULES

CONNECTION PLUGINS
(CLI, API, NETCONF)

VIRTUAL NETWORK PHYSICAL DEVICESSDN CONTROLLERS

ANSIBLE ENGINE

CONFIGURATION OPERATIONS
NETWORK ENGINE

ANSIBLE NETWORK STACK ARCHITECTURE

NETWORK MODULES

CONNECTION PLUGINS
(CLI, API, NETCONF)

VIRTUAL NETWORK PHYSICAL DEVICESSDN CONTROLLERS

ANSIBLE ENGINE

CONFIGURATION OPERATIONS
NETWORK ENGINE

NETWORK FUNCTIONS
DEVICE APPLICATION CLOUD OPERATOR

FOCUSED

DEVELOPER
FOCUSED

ANSIBLE NETWORK STACK ARCHITECTURE

The command parser

Interface IP-Address OK? Method Status
Protocol
Ethernet0/0 unassigned YES NVRAM up up
Ethernet0/0.11 10.0.1.38 YES NVRAM up up
Ethernet0/1 1.1.1.1 YES NVRAM up up
Ethernet0/2 unassigned YES NVRAM administratively down down
Ethernet0/3 unassigned YES NVRAM administratively down down
Loopback0 10.0.1.2 YES NVRAM up up

Custom show commands...

IKE Peer Type Dir Rky State Encrypt Hash Auth Lifetime
1 209.165.200.225 User Resp No AM_Active 3des SHA preshrd 86400
IKE Peer Type Dir Rky State Encrypt Hash Auth Lifetime
2 209.165.200.226 User Resp No AM_ACTIVE 3des SHA preshrd 86400
IKE Peer Type Dir Rky State Encrypt Hash Auth Lifetime
3 209.165.200.227 User Resp No AM_ACTIVE 3des SHA preshrd 86400
IKE Peer Type Dir Rky State Encrypt Hash Auth Lifetime
4 209.165.200.228 User Resp No AM_ACTIVE 3des SHA preshrd 86400

Devices that don’t have “facts” modules(yet)

lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
inet6 ::1 prefixlen 128
inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1
inet 127.0.0.1 netmask 0xff000000

en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
ether 34:15:9e:27:45:e3
inet6 fe80::3615:9eff:fe27:45e3%en0 prefixlen 64 scopeid 0x4
inet6 2001:db8::3615:9eff:fe27:45e3 prefixlen 64 autoconf
inet 192.0.2.215 netmask 0xfffffe00 broadcast 192.0.2.255
media: autoselect (1000baseT <full-duplex,flow-control>)
status: active

en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
ether 90:84:0d:f6:d1:55
media: <unknown subtype> (<unknown type>)
status: inactive

Non-network command output

What the command parser is ...

● Ansible action plugin
● YAML based regex parser
● Native integration with Ansible Engine
● Allows for import and export of variables to and from playbooks

.... and not

● Pre-written parsers
● Require a new DSL
● Magic..well, maybe a little.

"ip_interface_facts": [
 {
 "Ethernet0/0.11": {
 "data": {
 "admin_state": "up",
 "ip": "10.0.1.38",
 "name": "Ethernet0/0.11",
 "protocol_state": "up"
 }
 }
 },
 {
 "Ethernet0/1": {
 "data": {
 "admin_state": "up",
 "ip": "1.1.1.1",
 "name": "Ethernet0/1",
 "protocol_state": "up"
 }
 }
 },

...

Parsed output
"asa_ikev1_sa_detail": [
 {
 "asa_ikev1_sa_detail": {
 "data": {
 "auth_type": "preshrd",
 "direction": "Resp",
 "encryption": "3des",
 "hash_type": "SHA",
 "lifetime": "86400",
 "peer": "209.165.200.225",
 "rekey": "No",
 "sequence": "1",
 "state": "AM_Active",
 "type": "User"
 }
 }
 },

...

"interface_facts": [
 {
 "en0": {
 "data": {
 "ipv4_address": "192.0.2.215",
 "ipv6_address":
"2001:db8::3615:9eff:fe27:45e3",
 "link_status": "active",
 "mtu": "1500"
 }
 }
 },
 {
 "en1": {
 "data": {
 "ipv4_address": null,
 "ipv6_address": null,
 "link_status": "inactive",
 "mtu": "1500"
 }
 }
 }
]

How to write command parsers

Command parsers

Command Parsers are YAML files that look and feel like Ansible playbooks that you know and love

22

Invoking the command parser

- name: DYNAMIC REPORTING PART
 hosts: cisco
 gather_facts: no
 connection: network_cli

 roles:
 - ansible-network.network-engine

 tasks:
 - name: CAPTURE SHOW IP INTERFACE
 ios_command:
 commands:
 - show ip interface brief
 register: output

 - name: PARSE THE RAW OUTPUT
 command_parser:
 file: "parsers/ios/show_ip_interface_brief.yaml"
 content: "{{ output.stdout[0] }}" Raw input

Parser
template

A workflow
Create a regex pattern to

match data

Use the “parser
directives” and test

Build and export the
structured output

24

Build the regex

The parser directives

● pattern_match
● pattern_group
● json_template
● export_facts

Walkthrough of the workflow
Test the regex until you see all the data you are trying to capture, exporting at
each stage

Walkthrough of the workflow
Build out the final data structure and export

Call to action!

Contributing to the public parsers repo

https://github.com/network-automation/parser_templates

ASK THE EXPERTS
ansible-network@redhat.com

github.com/network-automation

facebook.com/ansibleautomation

twitter.com/ansible

