ARISTA

Ansible Solution Brief
22 February 2016

EOS+ Consulting Services

Introduction
Technical Solution
A History of the Arista + Ansible Solution
Conceptual Overview
Connection Methods
Understanding connection: local
CLI Connection
eAPI Connection
Module Overview
About the eos _eapi Module
About the eos_command Module
About the eos_config Module
About the eos_template Module
Creating a Workflow
Best Practices
Data Models
Roles
Sample Roles
Getting Started
Support from Arista

Introduction

Arista Networks and Ansible have partnered to bring the strength and agility of Ansible to your
network. Arista is built on extensibility and continues to leverage third-party integrations like
Ansible to help you get the most out of your switch. The following document describes some of
the new Ansible modules and provides tips to help build a comprehensive configuration
management solution.

Technical Solution

A History of the Arista + Ansible Solution

Arista has worked hard to provide comprehensive modules to the Ansible community for a few
years now. This initial effort was packaged under the arista.eos role, which has certainly done
its fair share of heavy lifting! However, as of Ansible 2.1, a set of redesigned modules ship with
Ansible in an effort to simplify and accelerate this powerful integration. We strongly recommend
users implement their configuration management and compliance solutions with these new
modules.

Conceptual Overview

The vast majority of network engineers feel comfortable with the look and feel of the CLI, and by
extension the running configuration. Therefore, in this new set of modules, a concerted effort
has been made to allow your playbooks and templates look and feel like the syntax so many are
already familiar with. By leveraging the syntax of the running configuration, Ansible users can
quickly determine which bits and pieces of the configuration need to change, and they know
exactly how to do it.

Configuration management is just one piece of a complete Ansible solution. Ansible 2.1
provides elegant ways to monitor the health and status of your switch along with the ability to
make corrective actions automatically.

Connection Methods

Understanding connection: local

Those familiar with linux server administration using Ansible know that following a successful
SSH connection, Ansible copies the module and corresponding variables to the server, where
the module is executed. For Arista switches, the model is slightly different. Playbooks will
indicate to Ansible that the module should be run locally on the Ansible Control Host using the
connection: local argument. The Ansible Control Host then reaches out to the Arista switch via
eAPI (http/s) or CLI (ssh).

CLI Connection

Ansible can communicate with your Arista switch using an existing EOS user. The module will
connect to your switch over SSH much the same way you would do so manually. Depending
upon your EOS configuration, the authorize feature may need to be used in order to send an
enable command to change modes.

eAPI Connection

Ansible can also leverage the built-in eAPI to read the running configuration and send various
commands. This requires that eAPI is enabled on your switch; running over HTTP or HTTPS.
Again, a standard EOS user can be used to authenticate commands that are sent via Ansible.

Whether you connect using CLI or eAPI, very little configuration is required on your switch to get
up and running. A simple EOS user and enabling of eAPI is the most that is needed. This
follows the Ansible tenet of an agentless architecture, and requires no additional packages be
installed on your Arista switch.

Module Overview

About the eos_eapi Module

The eos_eapi module allows rapid configuration of eAPI. This module allows you to
enable/disable eAPI’s various features using simple key/value arguments.

name: Enable eAPI with no HTTP, HTTPS at port 9443, local HTTP at port 80, and socket
enabled
eos_eapi:

state: started

http: false

https port: 9443

local http: yes

local http port: 80

socket: yes

provider: {{ provider }}

About the eos_command Module

The eos_command module provides a set of features to help run any EOS command and
intelligently analyze the output. Some examples help illustrate its power:

Example 1

eos_command:
commands: "{{ lookup('file', 'commands.txt') }}"

This task would allow you to read in a file of commands and execute each one independently.
The returned object would have the associated output from each command.

Example 2

eos_command:

commands :
- show version | Json
- show interfaces | Jjson
- show version

waitfor:
- "result[2] contains '4.15.0F'"
- "result[l].interfaces.Managementl.interfaceAddress[0].primaryIp.maskLen eq 24"
- "result[0].modelName == 'vEOS'"

This task utilizes the waitfor feature. This is very helpful when some state on the switch is
changing and you want to give it some time to complete. By using the waitfor argument, the
module will continue running the command until the waitfor condition is met (up until a
configurable timeout). This module provides a ton of functionality and the ability to make
intelligent decisions if certain state criteria are not met within a certain period of time.

About the eos_config Module

The eos_config module is the easiest and most straightforward way to modify the configuration
on your switch. Simply include commands that you expect to be present in the running-config
and the module will reach out to the switch and check to see if the command is absent or
present. Here’s a simple example:

Example 1

eos_config:
lines: ['hostname spine.Ol.ny.us']

This task would ensure that the switch hosthame was set to the specified string. Pretty simple.

Example 2

eos_config:
lines:
- 10 permit ip
- 20 permit ip
- 30 permit ip .3/32 any log
- 40 permit ip .4/32 any log
- 50 permit ip 5.5.5.5/32 any log
parents: ['ip access-list test']
before: ['no ip access-list test']
match: exact

.1/32 any log
.2/32 any log

=Sw N
Sw N
Sw N e

In the second example, we use some more of the eos_config features to intelligently modify and
ACL. Here, we tell the eos_config module to look at a specific ACL, ip access-list test using the
parents argument. We also tell the module that the entries must match: exactly, otherwise

execute all of the lines. Finally, we tell the module to run a negation command before running
any configuration commands so that we start with a clean ACL. The eos_config module is great
for small configuration changes, but it doesn’t allow you to work with larger sets of configuration
text. That's where eos_template comes in.

About the eos_template Module

The eos_template module allows you to pass in static running-configuration text or it will
execute a jinja template to generate the desired configuration. This becomes extremely
powerful since jinja provides a simple logic structure as well as advanced variable substitution.

The basic usage of eos_template would look something like:

Example 1

name: Provide a static startup configuration
eos template:
src: startup config.txt

where startup_config.txt is a standard startup-config file that the switch typically reads in. In this
case, the module will read every line in the text file and compare it to the current configuration
on the switch to determine which commands need to be run.

The power of eos_template is in the name, template. The module can be passed a jinja
template which it will execute first and then compare the resultant configuration against the

running-configuration on the switch.

Example 2

name: Configure Ethernet Interfaces
eos template:

src: interfaces.j2
with items: {{ intfs }}

Given the above task with the following host_vars and template:

host_vars

intfs:
- name: Ethernetl
mtu: 1500

desc: uplink to spine
- name: Ethernet2
mtu: 1000
desc: peering link to DC

interfaces.j2

interface {{ item.name }}
description {{ item.desc }}
mtu {{ item.mtu }}

This helps illustrate how powerful the templating module is. You can now simply keep a logical,
simple, data model in a database or in group/host_vars and then allow Ansible to perform the
templating and variable substitution. This makes multivendor environments very easy to
manage.

Creating a Workflow

Once you get the hang of these new modules you’ll want to fit the solution into a seamless
workflow. This can be accomplished using Ansible Tower along with other open source tools.

Consider the following scenario:

All of your playbooks and variables reside in a Git version-controlled repository. As part of the
daily adds, removals and updates, an admin wants to add a new vlan to a group of switches.
She creates a new branch in the Git repo and adds the new vlan in the appropriate group_vars
file. Then the change it committed via git and a pull request is generated to merge her change
into the master branch. In your git repo you can create a trigger which launches a Jenkins job to
run. This Jenkins job clones your repo and checks out your test branch. It then spins up some
vEOS devices and runs the playbook against them to look for any errors. You could even use
the eos_command module to run a series of checks to make sure the switch is operating as
expected. Once the success is reported, the git branch can be merged into master and the
playbook can be confidently run in production.

Best Practices

Data Models

Before you set out to create scores of playbooks that manage your network, it's important to
take time to plan. Part of this planning includes the creation of a data model. A well thought out
data model will help you keep track of your environment and even allow you to effortlessly
manage multiple systems and vendor devices. This data model should be self-describing and
easy to read such that anyone can review your group/host_vars and understand what each
variable does. Once you have a comprehensive data model, it will be easy to create templates
to implement EOS running-configuration commands.

Roles

It's easy to go overboard when you first start using Ansible to create a playbook for each and
every system and requirement. This can lead to repeated tasks in dozens of playbooks. This
quickly becomes unmanageable! The solution is to use Ansible roles to logically group
associated tasks together. For example you can have a bgp role that will configure bgp on any
Arista device. The tasks can be structured in a way that only certain ones are run for spine
config versus leaf config. By using roles, you can quickly update scores of playbooks by only
changing tasks in one place.

Sample Roles

Arista is already creating sample roles for the Ansible community. These roles are hosted at
galaxy.ansible.com/arista and showcase how easy it is to use these new modules.

Getting Started

Check out ansible.com/ansible-arista-networks to view the latest tutorials and getting started
documents.

Support from Arista

Arista Networks proudly provides both best-effort as well as comprehensive professional
services around Ansible implementations. If you need a hand, don’t hesitate to reach out to the
EOS+ Consulting Service group at ansible-dev@arista.com.

