
Citrix.com 1

White Paper | Automate NetScaler with Ansible

Introduction: Networking Automation for
Digital Transformation

Leading-edge businesses are changing the
way they respond to change. Their goal is to
react quickly to customer input and market
data by rapidly enhancing software applica-
tions and optimizing networks.

But change is risky, especially in complex en-
vironments that send multiple gigabits of data
every second to mission-critical applications.
Traditional manual methods for configuring
networking devices use command line inter-
faces and GUIs. These are prone to human
errors that can lead to performance problems
and downtime.

The solution is automation and orchestration.
Automation makes individual changes to soft-
ware and networks repeatable and reliable.
Orchestration coordinates multiple changes
so major projects, such as rolling out new
applications and upgrading infrastructure, can
be accomplished quickly and safely.

This white paper looks at how the Ansible can
help organizations automate the manage-
ment of Citrix NetScaler appliances. We will
examine some of the characteristics of the
Ansible tool, highlight a few of the benefits,
and review three Ansible playbooks to see
how they automate three processes:

Automate NetScaler with Ansible

More information about Ansible

The Ansible web site: https://www.ansible.com/
The Ansible documentation web site: http://docs.ansible.com/
Ansible modules for NetScaler: http://docs.ansible.com/ansible/latest/list_of_network_
modules.html#netscaler

•	 Deploying a NetScaler Application Delivery
Controller (ADC) as part of a new web
application rollout

•	 Updating an application service without
disrupting users

•	 Configuring global load balancing to
improve application performance and
availability

Overview of Ansible

Ansible is an open-source tool for automating
the deployment and upgrading of applica-
tions, and the configuration of software for
networking and security. It uses a simple, de-
clarative automation language to describe the
steps in each process. The steps are combined
in “playbooks” that execute on the Ansible
automation engine.

Playbooks can be made up of “modules” that
automate specific tasks. Ansible modules can
be used as building blocks and recombined to
orchestrate changes to complex, multi-tier ap-
plications. Over 1,300 pre-tested modules are
available online, including several for manag-
ing NetScaler capabilities (see links below).

Ansible communicates with NetScaler devices
using a REST API (called NITRO). It does not
require any agents or additional software on
devices it manages.

Citrix.com

White Paper | Automate NetScaler with Ansible

2

The Benefits of Using Ansible with NetScaler

For application development teams
and DevOps

Application development teams and DevOps
need to stage, deploy, and update complex,
multi-tier applications. NetScaler application
delivery controllers are a critical part of many
of those applications. They provide critical
services such as load balancing, application
acceleration, context-aware application
switching, DoS protection, application
firewalls, and features for high availability.
By automating the provisioning and
configuration of NetScaler appliances, Ansible
helps development teams and DevOps roll
out and enhance applications faster, without
disrupting ongoing business processes.

For network and IT operations groups

Network administrators and IT operations
groups need to continuously tune and
improve network performance, while
providing very near to 100 percent availability.
Networking devices like NetScaler are among
their key tools for ensuring fast, predictable
networks. Administrators can use Ansible to
automate hundreds of configuration changes
to NetScaler appliances. This eliminates
manual configuration processes, facilitates
rapid improvements to network performance,
and dramatically reduces human errors.

So everyone can work together

Ansible for NetScaler helps application
development teams and IT operations groups
work together. Because Ansible’s automation
language and playbooks are human readable
and easy to learn, both organizations can
participate in automating NetScaler updates.
Also, Ansible’s building block approach to
creating playbooks greatly simplifies the
task of orchestrating NetScaler configuration
tasks as part of large, complex application
deployment and infrastructure upgrade
projects.

Citrix.com 3

White Paper | Automate NetScaler with Ansible

Example #1: Deploying a NetScaler ADC as Part of a
New Web Application Rollout

A new customer-facing web application is
being deployed. It will run on two web servers
in the same data center.

A NetScaler appliance will be placed between
the web and the two servers. The NetScaler
node will:

Let’s see how Ansible can be used for this
basic NetScaler HTTPS setup. While it would
not be difficult to perform this effort manually
once, creating the Ansible playbook allows
the work to be replicated tens or hundreds
of times, with very little effort and consistent
results.

Preparation

Ansible 2.4 and the NITRO Python SDK must
be installed on the machine used to run the
Ansible playbooks. This machine must be
able to communicate with the REST API ports
(80/443) on the target NetScaler devices.

To install the NITRO Python SDK, clone the
NetScaler Ansible modules in the GitHub
repository (https://github.com/citrix/
netscaler-ansible-modules).

•	 Load balance traffic equally between the
two backend servers.

•	 Ensure HTTPS encryption between the
clients on the network and the NetScaler
appliance.

A NetScaler appliance load balancing traffic
across servers.

Traffic to 10.78.0.1

Load Balancer
10.78.0.1

Backend Server 1
10.10.0.1

Backend Server 2
10.10.0.2

50% of traffic

50% of traffic

NetScaler Load Balancer

From the checkout directory, run: pip install
deps/nitro-python-1.0_oban_51_11.tar.gz

Alternately, you can find the NITRO Python
SDK from the “Downloads” tab on the
NetScaler GUI.

Also, you will also need to define a host in
your Ansible inventory file. The file must have
a NetScaler host configured, along with the
needed connection variables.

Here is a sample inventory file:
netscaler nsip=10.78.60.200 nitro_
user=nsroot nitro_pass=nsroot

nsip is the IP address of the NetScaler node
that will receive the NITRO API calls. Nitro_
user and nitro_pass are the credentials used
to authenticate to the NetScaler appliance.
Here, their initial default values are “nsroot.”

Citrix.com

White Paper | Automate NetScaler with Ansible

4

The playbook

The example playbook for this scenario
performs three tasks. It:

1. Sets up a service group with two backend
services. These services are given equal
weights, so the NetScaler load balancer will
direct 50 percent of the requests to each
service.

2. Sets up an SSL certificate key that will be
used to encrypt traffic between the network
web clients and the NetScaler node.

3. Sets up the load balance virtual server that
will bind together the previous elements.

Notes:

•	 The files containing the SSL keys must
already be present on the NetScaler node.

•	 The “gather_facts” playbook parameter
should be set to “no.”

•	 The “delegate_to: localhost” parameter
should be set for each task.

Ansible will not connect directly to the
NetScaler node via SSH, because the Ansible
NetScaler modules configure NetScaler
appliance using the NITRO REST API.

Here is the playbook.

- hosts: netscaler
 gather_facts: no
 tasks:
 - name: Setup http service group
 delegate_to: localhost
 netscaler_servicegroup:
 nsip: “{{ nsip }}”
 nitro_user: “{{ nitro_user }}”
 nitro_pass: “{{ nitro_pass }}”

 servicegroupname: service-group-http
 servicetype: HTTP
 maxclient: 4000
 servicemembers:
 - ip: 10.10.0.1
 port: 80
 weight: 50
 - ip: 10.10.0.2
 port: 80
 weight: 50

 - name: Setup ssl certificate key
 delegate_to: localhost
 netscaler_ssl_certkey:
 nsip: “{{ nsip }}”
 nitro_user: “{{ nitro_user }}”
 nitro_pass: “{{ nitro_pass }}”

 certkey: certificate_http
 cert: server.crt
 key: server.key

 - name: Setup lb vserver
 delegate_to: localhost
 netscaler_lb_vserver:
 nsip: “{{ nsip }}”
 nitro_user: “{{ nitro_user }}”
 nitro_pass: “{{ nitro_pass }}”

 name: lb-vserver-http
 servicetype: SSL
 ipv46: 10.78.0.1
 port: 443
 ssl_certkey: certificate_http
 servicegroupbindings:
 - servicegroupname: service-group-http

Citrix.com 5

White Paper | Automate NetScaler with Ansible

Output

Here is the output of the playbook run. It shows that all tasks completed successfully (ok=3),
and that all three of the tasks run made changes to the NetScaler configuration (changed=3).

PLAY [netscaler] **

TASK [Setup http service group] **

changed: [netscaler -> localhost]

TASK [Setup ssl certificate key] ***

changed: [netscaler -> localhost]

TASK [Setup lb vserver] **

changed: [netscaler -> localhost]

PLAY RECAP **

netscaler : ok=3 changed=3 unreachable=0 failed=0

The NetScaler screens below indicate that the servicegroup and the lb vserver have been set up
according to our specification

The new service is now accessible at the configured IP address.

Citrix.com

White Paper | Automate NetScaler with Ansible

6

Example #2: Rolling Upgrade of a Service

A key e-commerce application has been
designed using a micro services architecture.
Several of the services are updated daily or
weekly, or even more frequently.

These services need to be updated on several
backend servers, while maintaining 100
percent availability for customers.

To manage a rolling upgrade, a NetScaler
appliance suspends traffic to each server in
turn while it is updated.

NetScaler Load Balancer

Let’s see how Ansible can be used to take
each server offline in turn to update a service,
without causing any disruption to customers.
While the update made here is trivial, the
same process can be used to perform series
of much more complex updates.

Preparation

Ansible 2.4 and the NITRO Python SDK must
be installed on the machine used to run the
Ansible playbooks, and that machine must be
able to communicate with the REST API ports
(80/443) on the target NetScaler devices (see
steps in the first scenario).

The playbook

The example playbook for this scenario
performs three tasks, which can be repeated
for each of the backend servers. The process:

1. Takes one backend web server out of the
live serving nodes.

2. Makes an update to software on that server
node.

3. Brings the server back into the live serving
nodes.

4. Repeats steps 1 -3 until all the server nodes
are updated.

The playbook uses “pre_tasks” and “post_
tasks” hooks. These are Ansible features that
make it easy to take a backend server offline
before the update process, and bring it back
up after the update has taken place.

In this playbook the “pre_tasks” section is
comprised of a single task that disables
the backend server in the NetScaler load
balancing setup. The “post_tasks” section is
a single task that re-enables the backend
server in the NetScaler load balancing setup.
The “serial: 1” option ensures that Ansible
applies the changes one web server node at
a time. Without it, Ansible would operate on
all of the web servers simultaneously – and
cause a service outage for customers.
The playbook applies the changes to the
hosts defined in the inventory file as members
of the “webservers” group.

A sample inventory file is shown below
[webservers]
172.30.0.21 nsip=172.30.0.10 nitro_
user=nsroot nitro_pass=nsroot
servername=webapp1 hostip=172.30.0.21
172.30.0.22 nsip=172.30.0.10
nitro_user=nsroot nitro_pass=nsroot
servername=webapp2 hostip=172.30.0.22

Netscaler
Load Balancer

Web Server 1

Web Server 2

Web Server 3

Citrix.com 7

White Paper | Automate NetScaler with Ansible

- hosts: webservers

 remote_user: root
 gather_facts: False
 serial: 1

 pre_tasks:
 - name: “Disable {{ servername }}”
 delegate_to: localhost
 netscaler_server:
 nsip: “{{ nsip }}”
 nitro_user: “{{ nitro_user }}”
 nitro_pass: “{{ nitro_pass }}”

 disabled: yes

 name: “{{ servername }}”
 ipaddress: “{{ hostip }}”
 post_tasks:

 - name: “Re enable {{ servername }}”
 delegate_to: localhost
 netscaler_server:
 nsip: “{{ nsip }}”
 nitro_user: “{{ nitro_user }}”
 nitro_pass: “{{ nitro_pass }}”

Output

Here is the output of the playbook run. It shows that the rolling upgrade process was applied to
each webserver in order. It also shows that three tasks were run for each web server (ok=3), and
that one made configuration changes (changed=1). The disable and enable tasks did not apply
changes.

PLAY [webservers] **

TASK [Disable webapp1] ***
ok: [172.30.0.21 -> localhost]

TASK [Update webapp1] ***
changed: [172.30.0.21 -> localhost]

TASK [Re enable webapp1] ***
ok: [172.30.0.21 -> localhost]

PLAY [webservers] **

TASK [Disable webapp2] ***
ok: [172.30.0.22 -> localhost]

TASK [Update webapp2] ***
changed: [172.30.0.22 -> localhost]

TASK [Re enable webapp2] **
ok: [172.30.0.22 -> localhost]

PLAY RECAP **

172.30.0.21 : ok=3 changed=1 unreachable=0 failed=0
172.30.0.22 : ok=3 changed=1 unreachable=0 failed=0

 name: “{{ servername }}”
 ipaddress: “{{ hostip }}”

 tasks:

 - name: “Update {{ servername }}”
 delegate_to: localhost
 command: docker-compose exec -d “{{
servername }}” bash -c “echo ‘hello updated
{{ servername }}’ > /app/content.txt”

Citrix.com

White Paper | Automate NetScaler with Ansible

8

The NetScaler screen below shows that before the update both services are UP.

This screen shows that during the first step of the process webapp1 has been taken offline. This
is the time when the backend software can be updated.

During the second step of the process, the updated webapp1 service has been brought back
online, and the webapp2 service has been taken offline so it can be updated.

At the end of the process, both services are brought online and the rolling update is complete.

Citrix.com 9

White Paper | Automate NetScaler with Ansible

Example #3: Configuring Global Server Load Balancing

The scenario

Management decides that a mission-critical
application must be continuously available,
even if an entire data center fails.
NetScaler appliances configured for global
server load balancing (GSLB) improve

application performance by directing client
requests to the closest or best performing
data center. In addition, if a data center
experiences an outage, they can provide for
disaster recovery and ensure continuous
availability by shifting all traffic to surviving
data centers.

For more information about global server
load balancing, see the Citrix documenta-
tion web site: http://docs.citrix.com/en-us/
netscaler/12/global-server-load-balancing.
html

A global server load balancing (GSLB)
configuration for two data centers.

NetScaler Load Balancer

Let’s see how Ansible can be used to
configure NetScaler appliances to provide load
balancing and high availability across data
centers.

Preparation

Ansible 2.4 and the NITRO Python SDK must
be installed on the machine used to run the
Ansible playbooks, and that machine must be
able to communicate with the REST API ports
(80/443) on the target NetScaler devices (see
steps in the first scenario).

The playbook

The main entities in a GSLB configuration are:

•	 GSLB sites represent a data center that
hosts services available to the Internet. A

GSLB site can be either remote or local. For
high availability, two GSLB sites must be
defined.

•	 GSLB services represent a set of services
that are available either locally or remotely.

•	 GSLB vservers are virtual servers that load
balance traffic across GSLB services.

In this playbook we create a GSLB
configuration in one data center. We set up an
http GSLB vserver which has two GSLB service
bindings, one local and one remote. The
vserver binds to the “example.com” domain
name.

With this setup any requests to the “example.
com” domain will be load balanced between
the two sites. Additional load balancing may
be performed among nodes of the local data

center. High availability is accomplished by
each site receiving Metric Exchange Protocol
messages on the configured GSLB site IP
address.

Notes:
(Required tasks not shown here)

•	 Setting up an Authoritative DNS server for
the example.com domain name.

•	 Configuring a content switching or load
balance virtual server for the local service
IP address.

•	 Configuring a second GSLB site with the
GSLB site types reversed, to enable a
complete high availability setup.

Here is the playbook.

ADNS IP Public IP

ADNS IP

DNS Traffic

DNS Traffic

Public IP Private IP

Site 1
Network

Site 2
Network

Private IP

Netscaler GSLB

Site 1

Site 2

Netscaler GSLB

MEP Sync

Netscaler
Load Balancer

Netscaler
Load Balancer

Citrix.com

White Paper | Automate NetScaler with Ansible

10

gather_facts: no

 tasks:

 - name: Setup local gslb site
 delegate_to: localhost
 netscaler_gslb_site:
 nsip: “{{ nsip }}”
 nitro_user: “{{ nitro_user }}”
 nitro_pass: “{{ nitro_pass }}”

 sitename: gslb-site-http
 siteipaddress: 192.168.1.4

 - name: Setup remote gslb site
 delegate_to: localhost
 netscaler_gslb_site:
 nsip: “{{ nsip }}”
 nitro_user: “{{ nitro_user }}”
 nitro_pass: “{{ nitro_pass }}”

 sitetype: REMOTE
 sitename: gslb-site-http-remote
 siteipaddress: 192.168.2.4
 - name: Setup local gslb service
 delegate_to: localhost

 netscaler_gslb_service:
 nsip: “{{ nsip }}”
 nitro_user: “{{ nitro_user }}”
 nitro_pass: “{{ nitro_pass }}”

 state: present

 servicename: gslb-service-http
 servicetype: HTTP
 port: 80
 ipaddress: 10.0.0.1
 sitename: gslb-site-http

 - name: Setup remote gslb service
 delegate_to: localhost
 netscaler_gslb_service:
 nsip: “{{ nsip }}”
 nitro_user: “{{ nitro_user }}”
 nitro_pass: “{{ nitro_pass }}”

 state: present

 servicename: gslb-service-http-remote
 servicetype: HTTP
 port: 80
 ipaddress: 10.10.0.1

Output

Here is the output of the playbook run.

PLAY [netscaler] **

TASK [Setup local gslb site] **
changed: [netscaler_vpx120 -> localhost]

TASK [Setup remote gslb site] **
changed: [netscaler_vpx120 -> localhost]

TASK [Setup local gslb service] ***
changed: [netscaler_vpx120 -> localhost]

TASK [Setup remote gslb service] ***
changed: [netscaler_vpx120 -> localhost]

TASK [Setup gslb vserver] ***
changed: [netscaler_vpx120 -> localhost]

PLAY RECAP **
netscaler_vpx120 : ok=5 changed=5 unreachable=0 failed=0

 sitename: gslb-site-http-remote

 - name: Setup gslb vserver
 delegate_to: localhost
 netscaler_gslb_vserver:
 nsip: “{{ nsip }}”
 nitro_user: “{{ nitro_user }}”
 nitro_pass: “{{ nitro_pass }}”

 state: present

 name: gslb-vserver-http
 servicetype: HTTP

 domain_bindings:
 -
 domainname: example.com
 ttl: 400

 service_bindings:
 - servicename: gslb-service-http
 weight: 50
 - servicename: gslb-service-http-
remote
 weight: 50

Citrix.com 11

White Paper | Automate NetScaler with Ansible

The NetScaler screen below shows that both the local and remote GSBL sites are live.

This screen shows that the GSLB vserver is now a public-facing HTTP server and will load
balance traffic between the two sites.

Conclusion

Ansible is a powerful tool for automating the
deployment and management of NetScaler
appliances.

Ansible and NetScaler together can help
application development teams stage, deploy,
and update complex, multi-tier applications
quickly and reliably, without disrupting
ongoing business processes. They can help
network administrators and IT operations
groups reduce the cost of and risk of making
hundreds of changes to the network. They
can help everyone deliver more value to their
organizations with fewer resources.

We hope this white paper also showed you
how easy it is to understand and create
Ansible playbooks for NetScaler, so you can
take advantage of these capabilities.

For more information on automation and
how Citrix NetScaler and Ansible partnership
can help your organization, visit
https://www.ansible.com/ansible-netscaler.

